Interpretable Policies for Reinforcement Learning by Genetic Programming
نویسندگان
چکیده
The search for interpretable reinforcement learning policies is of high academic and industrial interest. Especially for industrial systems, domain experts are more likely to deploy autonomously learned controllers if they are understandable and convenient to evaluate. Basic algebraic equations are supposed to meet these requirements, as long as they are restricted to an adequate complexity. Here we introduce the genetic programming for reinforcement learning (GPRL) approach based on model-based batch reinforcement learning and genetic programming, which autonomously learns policy equations from pre-existing default state-action trajectory samples. GPRL is compared to a straight-forward method which utilizes genetic programming for symbolic regression, yielding policies imitating an existing well-performing, but non-interpretable policy. Experiments on three reinforcement learning benchmarks, i.e., mountain car, cart-pole balancing, and industrial benchmark, demonstrate the superiority of our GPRL approach compared to the symbolic regression method. GPRL is capable of producing well-performing interpretable reinforcement learning policies from pre-existing default trajectory data.
منابع مشابه
Programmatically Interpretable Reinforcement Learning
We study the problem of generating interpretable and verifiable policies through reinforcement learning. Unlike the popular Deep Reinforcement Learning (DRL) paradigm, in which the policy is represented by a neural network, the aim in Programmatically Interpretable Reinforcement Learning (PIRL) is to find a policy that can be represented in a high-level programming language. Such programmatic p...
متن کاملParticle swarm optimization for generating interpretable fuzzy reinforcement learning policies
Fuzzy controllers are efficient and interpretable system controllers for continuous state and action spaces. To date, such controllers have been constructed manually or trained automatically either using expert-generated problem-specific cost functions or incorporating detailed knowledge about the optimal control strategy. Both requirements for automatic training processes are not found in most...
متن کاملDeep Reinforcement Learning for Sepsis Treatment
Sepsis is a leading cause of mortality in intensive care units and costs hospitals billions annually. Treating a septic patient is highly challenging, because individual patients respond very differently to medical interventions and there is no universally agreed-upon treatment for sepsis. In this work, we propose an approach to deduce treatment policies for septic patients by using continuous ...
متن کامل1 In Proceedings of the Thirteenth National Conference on Artificial Intelligence ( AAAI - 96 )
Procedural representations of control policies have two advantages when facing the scale-up problem in learning tasks. First they are implicit, with potential for inductive generalization over a very large set of situations. Second they facilitate modularization. In this paper we compare several randomized algorithms for learning modular procedural representations. The main algorithm, called Ad...
متن کاملHierarchical and Interpretable Skill Acquisition in Multi-task Reinforcement Learning
Learning policies for complex tasks that require multiple different skills is a major challenge in reinforcement learning (RL). It is also a requirement for its deployment in real-world scenarios. This paper proposes a novel framework for efficient multi-task reinforcement learning. Our framework trains agents to employ hierarchical policies that decide when to use a previously learned policy a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.04170 شماره
صفحات -
تاریخ انتشار 2017